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1
MULTI-STEP BAKE APPARATUS AND
METHOD FOR DIRECTED SELF-ASSEMBLY
LITHOGRAPHY CONTROL

CROSS-REFERENCE TO RELATED
APPLICATIONS

Pursuant to 37 C.F.R. §1.78(a)(4), this application claims
the benefit of and priority to prior filed co-pending Provi-
sional Application Ser. No. 61/793,204, filed Mar. 15, 2013,
which is expressly incorporated herein by reference in its
entirety.

FIELD OF THE INVENTION

The present invention relates generally to methods of fab-
ricating semiconductor devices and, more specifically, to
methods of fabricating semiconductor devices using directed
self-assembly processes.

BACKGROUND OF THE INVENTION

The need to remain competitive in cost and performance in
the production of semiconductor devices has caused a con-
tinuous increase in device density of integrated circuits. To
accomplish higher integration and miniaturization in a semi-
conductor integrated circuit, miniaturization of a circuit pat-
tern formed on a semiconductor wafer must also be accom-
plished.

Design rules define the space tolerance between devices or
interconnect lines so as to ensure that the devices or lines do
not interact with one another in any unwanted manner. One
important layout design rule that tends to determine the over-
all size and density of the semiconductor device is a critical
dimension (CD). A critical dimension of a circuit is defined as
the smallest width of a feature, e.g., a line or the smallest
space between two lines. Another critical design rule is mini-
mum pitch, which is defined as the minimum width of a given
feature plus the distance to the adjacent feature edge.

The continual reduction in CDs places increasing demands
on the techniques used to form the features. For example,
photolithography is commonly used to pattern these features.
Typically, photolithography involves passing radiation (light)
through a reticle and focusing the radiation onto a radiation
sensitive photoresist material. By directing radiation through
the reticle, the pattern in the reticle may be focused on the
photoresist. The radiation causes a chemical change in the
illuminated parts of the photoresist, which allows those illu-
minated parts to be selectively retained or removed, depend-
ing upon whether positive or negative photoresist is used,
relative to parts which were non-illuminated. Thus, the
exposed (illuminated) and unexposed (non-illuminated) parts
form a pattern in the photoresist.

Because photolithography is typically accomplished by
projecting radiation onto a surface, the ultimate resolution of
aparticular lithography technique depends upon factors such
as the optical proximity effects and the wavelength of the
radiation used. Optical proximity effects are known to result
from optical diffraction in the projection system. The diffrac-
tion causes adjacent features to interact with one another in
such a way as to produce pattern-dependent variations.
Accordingly, the closer together features are, the more prox-
imity effect is seen. Thus, the ability to locate line patterns
close together encroaches on optical parameter limitations.

One proposed solution for achieving critical dimensions
and pitches beyond those currently achievable by photoli-
thography techniques alone is utilizing directed self-assem-
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bly (DSA) lithography, which exploits the propensity of cer-
tain block copolymers to self-assemble into ordered
morphologies, having spherical, cylindrical, lamellar, or
bicontinuous gyroid microdomains. However, one challenge
for incorporating DSA lithography into mass production is
increased processing time caused by long annealing times
required for a block copolymer to self-assemble into suitable
CD targetry and uniformity.

Accordingly, new and improved methods of patterning
semiconductor devices using DSA lithography are needed.

SUMMARY OF THE INVENTION

Embodiments of the invention provide a method of form-
ing a patterned substrate, the method including casting a layer
of a block copolymer, having an intrinsic glass transition
temperature T, on a substrate to form a layered substrate. The
method also includes heating the layered substrate at an
annealing temperature, which is greater than about 50° C.
above the intrinsic glass transition temperature T, of the block
copolymer, in a first atmosphere for a first time period. The
method further includes thermally quenching the layered sub-
strate to a quenching temperature, which is lower than the
intrinsic glass transition temperature T,, at a rate of greater
than about 50° C./minute in a second atmosphere. The
method further includes controlling an oxygen content in the
first and second atmospheres to a level equal to or below about
8 ppm to maintain the annealing temperature and the quench-
ing temperature less than a thermal degradation temperature
T, of the block copolymer.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate embodi-
ments of the invention and, together with the general descrip-
tion of the invention given above, and the detailed description
given below, serve to describe the invention.

FIGS. 1A and 1B are diagrammatic views of a processing
system suitable for methods in accordance with embodiments
of the present invention;

FIG. 2 is a flow chart illustrating a method of forming a
patterned substrate, in accordance with an embodiment of the
present invention;

FIG. 3 a flow chart illustrating methods of thermally
quenching the layered substrate, in accordance with an
embodiment of the present invention;

FIG. 4 is a flow chart illustrating a method of casting a layer
of block copolymer on a substrate, in accordance with an
embodiment of the present invention; and

FIG. 5 is a flow chart illustrating a method of providing a
low oxygen environment to the layered substrate prior to
annealing the layer of block copolymer.

DETAILED DESCRIPTION OF THE DRAWINGS

Methods for forming a patterned substrate are disclosed in
various embodiments. However, one skilled in the relevant art
will recognize that the various embodiments may be practiced
without one or more of the specific details, or with other
replacement and/or additional methods, materials, or compo-
nents. In other instances, well-known structures, materials, or
operations are not shown or described in detail to avoid
obscuring aspects of various embodiments of the invention.

Similarly, for purposes of explanation, specific numbers,
materials, and configurations are set forth in order to provide
a thorough understanding of the invention. Nevertheless, the
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invention may be practiced without specific details. Further-
more, it is understood that the various embodiments shown in
the figures are illustrative representations and are not neces-
sarily drawn to scale. In referencing the figures, like numerals
refer to like parts throughout.

Reference throughout this specification to “one embodi-
ment” or “an embodiment” or variation thereof means that a
particular feature, structure, material, or characteristic
described in connection with the embodiment is included in at
least one embodiment of the invention, but does not denote
that they are present in every embodiment. Thus, the appear-
ances of the phrases such as “in one embodiment” or “in an
embodiment” in various places throughout this specification
are not necessarily referring to the same embodiment of the
invention. Furthermore, the particular features, structures,
materials, or characteristics may be combined in any suitable
manner in one or more embodiments. Various additional lay-
ers and/or structures may be included and/or described fea-
tures may be omitted in other embodiments.

Additionally, it is to be understood that “a” or “an” may
mean “one or more” unless explicitly stated otherwise.

Various operations will be described as multiple discrete
operations in turn, in a manner that is most helpful in under-
standing the invention. However, the order of description
should not be construed as to imply that these operations are
necessarily order dependent. In particular, these operations
need not be performed in the order of presentation. Opera-
tions described may be performed in a different order than the
described embodiment. Various additional operations may be
performed and/or described operations may be omitted in
additional embodiments.

In accordance with embodiments of the present invention,
the method of forming a patterned substrate is provided by
utilizing a combination of a rapid annealing process and a
thermal quench, which rapidly reduces the kinetics of block
copolymer microphase separation to provide improved criti-
cal dimension control and reduce defects at the end of the
annealing process. The method includes casting a layer of a
block copolymer on a substrate; heating the layered substrate
in a first environment at an annealing temperature for a first
time period; and thermally quenching the layered substrate.
In accordance with another embodiment, the method further
includes controlling an oxygen content in the first and second
atmospheres to a level equal to or below about 8 ppm to
minimize the thermal degradation of the block copolymer
under the annealing conditions and/or the quenching condi-
tions.

As used herein, the term “polymer block” means and
includes a grouping of multiple monomer units of a single
type (i.e., a homopolymer block) or multiple types (i.e., a
copolymer block) of constitutional units into a continuous
polymer chain of some length that forms part of a larger
polymer of an even greater length and exhibits a N value,
with other polymer blocks of unlike monomer types, that is
sufficient for phase separation to occur. 7 is the Flory-Hug-
gins interaction parameter and N is the total degree of poly-
merization for the block copolymer. According to embodi-
ments of the present invention, the ¥ N value of one polymer
block with at least one other polymer block in the larger
polymer may be equal to or greater than about 10.5.

As used herein, the term “block copolymer” means and
includes a polymer composed of chains where each chain
contains two or more polymer blocks as defined above and at
least two of the blocks are of sufficient segregation strength
(e.g., ¥N>10.5) for those blocks to phase separate. A wide
variety of block polymers are contemplated herein including
diblock copolymers (i.e., polymers including two polymer
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blocks (AB)), triblock copolymers (i.e., polymers including
three polymer blocks (ABA or ABC)), multiblock copoly-
mers (i.e., polymers including more than three polymer
blocks (ABCD, etc.)), and combinations thereof. As used
herein, the term “substrate” means and includes a base mate-
rial or construction upon which materials are formed. It will
be appreciated that the substrate may include a single mate-
rial, a plurality of layers of different materials, a layer or
layers having regions of different materials or different struc-
tures in them, etc. These materials may include semiconduc-
tors, insulators, conductors, or combinations thereof. For
example, the substrate may be a semiconductor substrate, a
base semiconductor layer on a supporting structure, a metal
electrode or a semiconductor substrate having one or more
layers, structures or regions formed thereon. The substrate
may be a conventional silicon substrate or other bulk substrate
comprising a layer of semiconductive material. As used
herein, the term “bulk substrate” means and includes not only
silicon wafers, but also silicon-on-insulator (“SOI”) sub-
strates, such as silicon-on-sapphire (“SOS”) substrates and
silicon-on-glass (“SOG”) substrates, epitaxial layers of sili-
con on a base semiconductor foundation, and other semicon-
ductor or optoelectronic materials, such as silicon-germa-
nium, germanium, gallium arsenide, gallium nitride, and
indium phosphide. The substrate may be doped or undoped.

The terms “microphase segregation” and “microphase
separation,” as used herein mean and include the properties
by which homogeneous blocks of a block copolymer aggre-
gate mutually, and heterogeneous blocks separate into dis-
tinct domains. In the bulk, block copolymers can self
assemble into ordered morphologies, having spherical, cylin-
drical, lamellar, or bicontinuous gyroid microdomains, where
the molecular weight of the block copolymer dictates the
sizes of the microdomains formed. The domain size or pitch
period (L) of the self-assembled block copelymer morphol-
ogy may be used as a basis for designing critical dimensions
of'the patterned structure. Similarly, the structure period (L),
which is the dimension of the feature remaining after selec-
tively etching away one of the polymer blocks of the block
copolymer, may be used as a basis for designing critical
dimensions of the patterned structure.

The lengths of each of the polymer blocks making up the
block copolymer may be an intrinsic limit to the sizes of
domains formed by the polymer blocks of those block
copolymers. For example, each of the polymer blocks may be
chosen with a length that facilitates self-assembly into a
desired pattern of domains, and shorter and/or longer copoly-
mers may not self-assemble as desired.

The term “annealing” or “anneal” as used herein means
and includes thermal treatment of the block copolymer so as
to enable sufficient microphase segregation between the two
or more different polymeric block components of the block
copolymer to form an ordered pattern defined by repeating
structural units formed from the polymer blocks. Annealing
of the block copolymer in the present invention may be
achieved by various methods known in the art, including, but
not limited to: thermal annealing (either in a vacuum or in an
inert atmosphere, such as nitrogen or argon), solvent vapor-
assisted annealing (either at or above room temperature),
supercritical fluid-assisted annealing, or laser-assisted
annealing. As a specific example, thermal annealing of the
block copolymer may be conducted by exposing the block
copolymer to an elevated temperature that is above the glass
transition temperature (T,), but below the thermal degrada-
tion temperature (T ;) of the block copolymer, as described in
greater detail hereinafter. Other conventional annealing
methods not described herein may also be utilized.
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Turning now to the FIGS., and in particular to FIG. 1A, a
processing system 10 suitable for use with embodiments of
the present invention is shown. Generally, the system 10
includes a heating chamber 12 and a cooling chamber 14,
each having a wafer support 16, 18 therein, configured to
support and heat or cool a wafer 30 positioned thereon. The
wafer support 16 also referred to as a heating plate 16, and
wafer support 18 is also referred to as a chilling plate. As used
herein, the wafer 30 may refer to any structure providing a
“substrate” in the fabrication of one or more semiconductor
devices. Each of the heating and cooling chambers 12, 14
includes an exhaust chamber 20, 22 that is fluidically-coupled
to a vacuum pump (not shown) via an exhaust port 24, 26. As
shown, the heating and cooling chamber may be physically
isolated from one another by a movable door 31 that is opera-
tionally coupled with the operation of a transfer mechanism
32, as discussed below.

The system 10 of FIGS. 1A and 1B includes a dedicated
transfer mechanism 32 positioned within the cooling cham-
ber 14 and having a transfer arm 34 configured to transfer the
watfer 30 between a home position within the cooling cham-
ber 14, as shown in FIG. 1A and a transfer position above the
heating plate 16, as shown in FIG. 1A. In this way, the wafer
30 may be transferred between the heating plate 16 and the
chilling plate 18 as necessary and in accordance with a par-
ticular processing method. More specifically, the wafer 30
supported by the heating plate 16 may be heated and then
lifted, via lift pins 28, off the heating plate 16. The movable
door 31 may be repositioned provide an opening between the
heating and cooling chambers 12, 14 to permit entry of the
chilling plate 18 into the heating chamber 12. The transfer
arm 34 moves the chilling plate 18 the transfer position such
that the lift pin 28 may lower the wafer 30 onto the chilling
plate 18. Thereafter, the transfer arm 34 withdraws the chill-
ing plate 18 with the wafer 30 to the home position so the
wafer 30 may be cooled. Although the illustrated cooling
system 14 is shown with a chilling plate 18, the cooling
chamber 14 may comprise at least one of a wafer chuck
configured in fluid communication with a chiller unit, a ther-
moelectric device, or a gas inlet in fluid communication with
a convective gas supply.

The system 10 may also include one or more feedback
control mechanisms (not shown), such as analyzers, sensors,
and controllers that monitor and adjust the atmospheres in the
heating chamber, cooling chamber, and/or transfer area. For
example, the feedback control mechanisms may be capable of
making real-time adjustments with respect to temperature,
oxygen levels, and/or pressure.

The wafer 30 may include a substrate having bottom and
top hard resist layers formed thereon. While the terms “top”
and “bottom” may be generally arbitrarily set, as used herein,
the top of a wafer 30 is the side that is being processed or that
is facing the deposition apparatus. In a preliminary step, a
photoresist layer is deposited onto the top hard resist layer,
patterned, and developed to provide guiding layers. In that
regard, the photoresist layer may be masked, imaged, devel-
oped, and processed in accordance with conventional proce-
dures.

With reference now to FIG. 2, a flow chart 100 illustrating
a method of processing the wafer 30 according to one
embodiment of the present invention is described. In step 110,
a layer of block copolymer (BCP) is cast onto the substrate to
form a layered substrate. The BCP has an intrinsic glass
transition temperature T,. The BCP layer includes first and
second polymer blocks, which can under a thermodynamic
microphase separation to form a first and a second domain.
The lengths of each of the blocks making up the first and
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6

second polymer block may intrinsically limit the sizes of the
first and second domains. For example, the first and second
block copolymers may be chosen with a sufficient length to
facilitate self-assembly into the desired pattern of domains
because shorter copolymers may not self-assemble as
desired. Exemplary first block copolymers may include, but
are not limited to, poly(9,9-bis(6'-N,N,N-trimethylammo-
nium)-hexyl)-fluorenephenylene) (“PFP”), poly(4-vinylpyri-
dine) (“4PVP”), hydroxypropyl methylcellulose (“HPMC”),
polyethylene glycol (“PEG”), poly(ethylene oxide)-co-poly
(propylene oxide) di- or multiblock copolymers, poly(vinyl
alcohol)  (“PVA”),  poly(ethylene-co-vinyl  alcohol)
(“PEVA”), poly(acrylic acid) (“PAA”), poly(ethyloxazoline),
poly(alkylacrylate), polyacrylamide, poly(N-alkylacryla-
mide), poly(N,N-dialkylacrylamide), poly(propylene glycol)
(“PPG”), poly(propylene oxide) (“PPO”), partially or fully
hydrolyzed poly(vinyl alcohol), dextran, polystyrene (“PS”),
polyethylene (“PE”), polypropylene (“PP”), polychloroprene
(“CR”), polyvinyl ether (“PVE”), poly(vinyl acetate)
(“PVAc”), poly(vinyl chloride) (“PVC”), polyurethane
(“PU”), and polyacrylate. Exemplary second block copoly-
mers may include, but are not limited to, silicon-containing
polymers such as a polysiloxane (e.g., polydimethylsiloxane
(“PDMS”)) or silicon- and iron-containing polymers (e.g.,
poly(ferrocenyldimethylsilane) (“PFS”)). Thus, exemplary
block copolymers may include polystyrene-b-polydimethyl-
siloxane (“PS-PDMS”), poly(2-vinylpyridine-b-dimethylsi-
loxane (“P2VP-PDMS”), or polystyrene-b-poly(ferroce-
nyldimethylsilane) (“PS-PFS”). Modifications of the block
copolymers is also envisaged, such as that disclosed in U.S.
Patent Application Serial No. 2012/0046415, entitled
METHODS OF FORMING BLOCK COPOLYMERS,
METHODS OF FORMING A SELF-ASSEMBLED
BLOCK COPOLYMER STRUCTURE AND RELATED
COMPOSITIONS, the disclosure of which is incorporated
herein by reference, in its entirety.

Referring still to FIG. 2, in step 120, the layered substrate
is heated at an annealing temperature in a heating atmosphere
for a period of time. In the annealing step 120, the layered
substrate is heated to a temperature sufficient to allow the
BCP to self-organize into first and second domains, each of
which is characterized by its respective polymer block. This
copolymer microphase separation drives lithography CD and
pitch control.

Annealing of BCP’s is a thermodynamic phenomenon that
can be accelerated by a kinetic process. Accordingly, by rais-
ing the annealing temperature very high above the intrinsic
glass transition temperature T, less time is required for the
annealing step 120. In accordance with an embodiment, the
annealing temperature may be greater than about 50° C.
above the intrinsic glass transition temperature T, of the block
copolymer. The annealing temperature may be in the range of
100-400° C. With respect to a PS-PDMS block copolymer,
for example, the annealing temperature may be 340° C. In
accordance with an embodiment, the layered substrate may
be heated in a furnace, which is adapted and designed for
batch processing, or heated in an oven, which is adapted and
designed for single wafer processing. The period of time may
comprise a time in the range of 2 minutes to more than 4
hours.

In step 130, the layered substrate is thermally quenched in
a quenching atmosphere to a quenching temperature that is
less than the intrinsic glass transition temperature T,. The
cooling atmosphere may be held at room temperature, for
example. The quenching rapidly lowers a temperature of the
layered substrate from the annealing temperature to the
quenching temperature. By quickly reducing the kinetic
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movement of the polymer blocks, the CD is controlled or
“locked in,” which enables better CD control targeting and
lowers defects. When the layered substrate is annealed at a
high temperature, rapid quenching is important because the
CD and pitch of the BCP continue to change as long as the
temperature of the layered substrate is above the intrinsic
glass transition temperature T,. The quenching atmosphere
may comprise a cooling chamber 14, specifically a cooling
Front Opening Unified Pod (FOUP), for example.

According to embodiments of the present invention, ther-
mally quenching the annealed layered substrate may be per-
formed in several manners. For example, as shown in FIG. 3,
the thermal quenching may comprise at least one of reducing
a pressure of the second atmosphere (step 132), flowing con-
vective gas around the layered substrate (step 134), contact-
ing the layered substrate with a wafer chuck in communica-
tion with a chiller unit (step 136), and/or contacting the
layered substrate with cooling arms (step 138). With respect
to step 134, the convective gas may comprise nitrogen, argon,
or helium, for example. The quenching may also comprise
use of a thermoelectric Peltier device. The quenching step 130
may occur over a duration of time equal to or less than
approximately 1-5 minutes and/or at a rate greater than or
equal to 50° C./minute. With the example of PS-PDMS, the
layered substrate may be quenched from a temperature of
340° C. to a temperature of 250° C. in 1 minute (i.e., at a rate
ot 90° C./minute).

In an embodiment in which the heating atmosphere com-
prises a heating chamber 12 and the quenching atmosphere
comprises a cooling chamber 14, one or more lots of layered
substrates may be processed simultaneously. The layered
substrates may be transtferred to the heating chamber 12 prior
to heating the layered substrate at the annealing temperature
and may be transferred to the cooling chamber 14 prior to
thermally quenching. The transferring may be achieved with
use of the transfer mechanism 32. By processing the layered
substrates in multiple chambers, it is not necessary to wait for
a single chamber to transition between a very high annealing
temperature and the quenching temperature. Particularly as a
result a large thermal mass inside the chamber during the
processing of a batch of wafers, it takes a long time to tran-
sition between the annealing and quenching temperatures.

Use of separate heating and cooling chambers 12, 14 is
efficient and enables the system 10 to maintain a high
throughput. For example, layered substrates can bake in the
heating chamber 12 for 60 minutes, and then proceed to the
cooling chamber 14 for 30 minutes. New layered substrates
may be moved into the heating chamber 12 immediately after
the first lot(s) is removed to the cooling chamber 14. There-
fore, productivity may be maintained without requiring time
to directly heat and cool a single chamber.

In another embodiment, a single layered substrate may be
positioned on a track in an oven during the heating step.
Moreover, the layered substrate may be transferred from the
track to the cooling chamber 14, comprising, for example, a
chill plate or an oven, prior to thermally quenching. In this
embodiment, the cooling chamber 14 may include at least one
of a wafer chuck configured in fluid communication with a
chiller unit; a convective blanket of nitrogen, argon, or
helium, for example; or cooling arms. The cooling arms may
be employed in a nitrogen buffer chamber.

According to one aspect of the present invention, the oxy-
gen content of the processing environments can be controlled
to minimize thermal degradation of the BCP at elevated tem-
peratures. Returning now to FIG. 2, in a step 140, an oxygen
content in the annealing and quenching atmospheres is con-
trolled to a level that is less than or equal to about 5 ppm to
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about 8 ppm so as to maintain the annealing temperature and
the quenching temperature below a thermal degradation tem-
perature T, of the BCP. For the example of PS-PDMS, an
oxygen level of less than 5 ppm may be required. When
layered substrates are annealed at high temperatures, the
polymers may oxidize, which causes CD defects. Therefore,
maintaining a low oxygen environment helps prevent such
oxidation and helps to lock in the CD and pitch. In an embodi-
ment, the low oxygen environment is maintained even while
the layered substrate is transferred between the chambers.
After a temperature of the layered substrate is below the
oxidation level of the polymer, the wafer may be transferred
to atmospheric conditions, such as in a watfer FOUP.

With reference to FIG. 4, in an embodiment in which the
heating chamber comprises a furnace, the casting step 110
may include applying a solution comprising the block
copolymer and an organic solvent to the substrate to form a
solvated layer of the block copolymer (step 112). The casting
step 110 may further include performing a post-application
bake of the layered substrate to reduce an amount of the
organic solvent in the solvated layer (step 114) prior to heat-
ing the layered substrate at the annealing temperature. A
temperature of the post-application baking is lower than the
intrinsic glass transition temperature T,.. The post-application
bake may be performed at a temperature of approximately
110° C., for example. The post-application bake helps to
reduce the amount of casting solvent that enters the furnace
and, thus, helps prevent organic build-up in the furnace. The
post-application bake may be performed on a track, and the
exhaust may be pumped down outside the system 10.

With reference now to FIG. 5, in an embodiment in which
a single wafer is processed in an oven, the method 100 may
comprise an additional step 150 of evacuating an environment
surrounding the layered substrate to a pressure equal to or less
than 100 torr prior to the annealing 120 of the layered sub-
strate. The evacuation may be accomplished with use of a
vacuum pump, and the resulting change in pressure may lead
to a temperature decrease in the oven.

The method 100 may further comprise the optional step
160 of introducing a processing gas having an oxygen content
equal to or less than about 8 ppm to the environment sur-
rounding the layered substrate to provide the heating atmo-
sphere, wherein the introducing the processing gas is per-
formed after the evacuating step 150 and prior to the
annealing step 120. The processing gas may comprise an
organic solvent in a gaseous phase to provide a content of the
organic solvent in the first atmosphere at a level equal to or
greater than about 100 torr, thereby defining a solvent-rich
environment.

After the annealing step 120 and the quenching step 130,
the layered substrate may be maintained at a temperature
below the intrinsic glass transition temperature T,, while
concurrently lowering the organic solvent content in the envi-
ronment surrounding the layered substrate. This lowering of
the organic solvent content may be accomplished by trans-
ferring the layered substrate to a post-application bake plate
for abake at a temperature below the intrinsic glass transition
temperature T,. This baking may help to remove an amount of
residual solvent. The baking temperature should be low
enough so that solvent is removed slowly, which helps to
minimize polymer cracking and/or delamination of the lay-
ered substrate.

While the present invention has been illustrated by a
description of one or more embodiments thereof and while
these embodiments have been described in considerable
detail, they are intended to restrict or in any way limit the
scope of the appended claims to such detail. Additional
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advantages and modifications will readily appear to those
skilled in the art. The invention in its broader aspects is
therefore not limited to the specific details, representative
apparatus and method, and illustrative examples shown and
described. Accordingly, departures may be made from such
details without departing from the scope of the general inven-
tive concept.
What is claimed is:
1. A method of forming a patterned substrate, comprising:
casting a layer of a block copolymer on a substrate to form
a layered substrate, wherein the block copolymer is
polystyrene-b-polydimethylsiloxane,  polystyrene-b-
poly(ferrocenyldimethylsilane), or poly(2-vinylpyri-
dine)-b-polydimethylsiloxane, and wherein the block
copolymer has an intrinsic glass transition temperature
T,

heagng the layered substrate at an annealing temperature in
a first atmosphere for a first time period, wherein the
annealing temperature is greater than about 50° C. above
the intrinsic glass transition temperature T, of the block
copolymer;

thermally quenching the layered substrate to a quenching

temperature at a rate of greater than about 50° C/minute
in a second atmosphere, wherein the quenching tem-
perature is lower than the intrinsic glass transition tem-
perature T,; and

controlling an oxygen content in the first and second atmo-

spheres to a level equal to or less than about 8 ppm to
maintain the annealing temperature and the quenching
temperature below a thermal degradation temperature
T, of the block copolymer.

2. The method of claim 1, wherein thermally quenching
comprises:

reducing a pressure of the second atmosphere;

flowing a convective gas around the layered substrate;

contacting the layered substrate with a wafer chuck con-

figured in fluid communication with a chiller unit;
contacting the layered substrate with cooling arms; or
combinations thereof.

3. The method of claim 2, wherein the thermally quenching
comprises flowing a convective gas comprising nitrogen.

4. The method of claim 1, wherein the thermally quenching
lowers a temperature of the layered substrate from the anneal-
ing temperature to the quenching temperature over a duration
of time equal to or less than about 5 minutes.

5. The method of claim 1, wherein the oxygen content is
less than about 5 ppm of oxygen.

6. The method of claim 1, wherein the first atmosphere is
defined by a heating chamber and the second atmosphere is
defined by a cooling chamber, the method further comprising:

transferring the layered substrate to the heating chamber

prior to heating the layered substrate at the annealing
temperature; and

transferring the layered substrate to the cooling chamber

prior to thermally quenching.

7. The method of claim 6, wherein the cooling chamber
comprises at least one of a wafer chuck configured in fluid
communication with a chiller unit, a thermoelectric device, or
a gas inlet in fluid communication with a convective gas
supply.

8. The method of claim 6, wherein the cooling chamber
comprises a cooling front opening unified pod.
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9. The method of claim 1, wherein the casting of the layer
of the block copolymer comprises:

applying a solution comprising the block copolymer and an

organic solvent to the substrate to form a solvated layer
of the block copolymer; and

performing a post-application bake to reduce an amount of

the organic solvent in the solvated layer prior to heating
the layered substrate at the annealing temperature.

10. The method of claim 9, wherein performing the post-
application bake is performed on a track.

11. The method of claim 9, further comprising transferring
the layered substrate to a furnace prior to heating the layered
substrate at the annealing temperature.

12. The method of claim 1, wherein the heating the layered
substrate occurs on a track in an oven, the method further
comprising:

transferring the layered substrate from the track to a cool-

ing chamber prior to thermally quenching.

13. The method of claim 12, wherein the cooling chamber
comprises at least one of a wafer chuck configured in fluid
communication with a chiller unit, a nitrogen blanket, or
cooling arm.

14. The method of claim 1, further comprising:

evacuating an environment surrounding the layered sub-

strate to a pressure equal to or less than 100 torr prior to
the heating the layered substrate at the annealing tem-
perature; and

optionally introducing a processing gas having an oxygen

content equal to or less than about 8 ppm to the environ-
ment surrounding the layered substrate to provide the
first atmosphere, wherein the introducing the processing
gas is performed after the evacuating and prior to the
heating the layered substrate at the annealing tempera-
ture.

15. The method of claim 14, wherein the processing gas
comprises an organic solvent in a gaseous phase to provide a
partial pressure of the organic solvent in the first atmosphere
at a level equal to or greater than about 100 torr thereby
defining a solvent-rich environment.

16. The method of claim 15, further comprising:

maintaining the layered substrate at a temperature below

the intrinsic glass transition temperature T, after ther-
mally quenching, while concurrently lowering the
organic solvent content in the environment surrounding
the layered substrate.

17. The method of claim 16, further comprising:

transferring the layered substrate to a post application bake

plate; and

baking the layered substrate at the temperature below the

intrinsic glass transition temperature T,, wherein the
baking removes an amount of the organic solvent from
the layered substrate.

18. The method of claim 1, wherein the first time period is
less than about four hours.

19. The method of claim 1, wherein the first time period is
about one hour.

20. The method of claim 1, wherein the block copolymer is
polystyrene-b-polydimethylsiloxane, and the annealing tem-
perature is 340° C.



